Code: 20EE3603

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

POWER SYSTEMS ANALYSIS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks
	1	UNIT-I	l	l	•
1	a)	Discuss the advantages of per unit system. Prove	L2	CO1	4
		that per unit impedance of a transformer referred			
		to either HV or LV side is same.			
	b)	Construct the reactance diagram using a base of	L3	CO2	10
		50MVA and 13.8KVon generator G1			
		T1 Line 1 Line 3 j 80 ohm j 100 ohm T2 T2 T3			
		G1: 20MVA, 13.8KV, X''=20%;			
		G2: 30MVA, 18.0KV, X''=20%			
		G3: 30MVA, 20.0KV, X''=20%;			
		T1: 25MVA, 220/13.8 KV, X =10%			
		T2:Three Single phase transformers each rated			
		10MVA, 220/18 KV, X =10%			
		T3: 35MVA, 220/22 KV, X =10%			

						OR					
2	a)	a) Discuss the single line diagram? Explain wit suitable example.									7
	b)	Construct to system show 100 MVA transmission		CO2	7						
		90 MVA 80 M 20 KV 20/20 X = 9% X = 1									
					UN	IIT-II			•		
3	a)	Analyze the equations in bus and why		CO4	4						
	b)								1.3	CO3	10
			_		_				10		
		power and angle at bus 2 using G.S. method. Perform one iteration									
			Bus co			Imped	ance				
			1-2		(0.06 +					
			1-3		($0.02 + j \ 0.06$					
			2-3		(0.04 +	j 0.12				
		BUS	P_{G}	Q_{G}	P_{D}	Q_{D}	Bus volt	age			
		1 (slack)	-	-	-	-	1.04∠0)0			
		2 (PV)	3	0	-	-	$V_2 = 1.02$				
		3 (PQ)	0	0	2	1.4	(0 <q<sub>2<</q<sub>	4)			
	<u> </u>	5 (1 2)				OR			<u> </u>		
4	a)	Explain algorithm for G.S load flow method Write the advantages and disadvantages of								CO4	7
		Gauss-Seidel method.									

	b)	The 1	ine data	for th	ne 3 hi	is syste	m Obt	ain L	3	CO3	7
			using d				,				
			•	aw							
		me m	e diagrai								
			Bus code Line impedance								
			1-2			j 0.20					
			1-3			j 0.15					
		2-3 j 0.10									
	ı				UNIT	Y-III					
5	a)	a) Infer the various methods used to solve load									7
		flow problem and discuss their merits and									
		demei	its.								
	b)	Const	ruct the	N-R me	ethod lo	oad flow	algoritl	nm L	3	CO3	7
			scuss the								
6		Colou	loto volte	agos and) and k	NIC I	2	CO3	14
0			late volta	•	•				3	COS	14
			ng New	ton Ka	apsnon	method	i. Perio	rm			
		one it	eration.								
				code	Iı	mpedance					
			1-2 6-j10								
			1-3 4-j8								
		BI	2-3 3-j6				7				
			ob COBL	•	V	Q V Type of bus					
			1			$1.06 \angle 0^0$	slack	1			
			2	0.9	0.1	$1 \angle 0^0$	PQ	1			
				0.0	0.0	1 (0)	7.0				
			3	0.8	0.3	$1 \angle 0^0$	PQ				
					UNIT	 Γ -ΙV					
7	a)									CO5	7
		single line to ground fault as an unloaded									-
		generator and draw its sequence network.									
	b)									CO2	7
	b)								3		1
		$X_1=X_2=20\%$ and $X_0=5\%$. Its neutral is grounded									

		through Reactor of 0.32 ohms. The generator is			
		operating at rated voltage without load. when			
		Line to Line fault occurs at the its terminal.			
		Calculate the sub transient current in fault phase.			
	l	OR	l		
8	a)	Draw and explain the positive, negative, zero sequence impedance diagrams for different	L4	CO5	7
		3-phase transformer winding connections.			
	b)	Interpret expression for the fault current for Line	L3	CO2	7
		to Line fault as an unloaded generator and draw			•
		its Sequence network.			
		UNIT-V			
9	a)	Explain Transient stability and Discuss the	L4	CO4	7
		methods to improve transient stability.			
	b)	Explain and derive the expression for swing	L4	CO4	7
		equation.			
	ı	OR	1	,	
10	a)	Differentiate between steady state stability,	L4	CO4	7
		dynamic stability and transient stability with			
		suitable examples.			
	b)	Explain power angle curve and sketch the power	L4	CO4	7
		angle curve.			